If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-40c^2+31c=6
We move all terms to the left:
-40c^2+31c-(6)=0
a = -40; b = 31; c = -6;
Δ = b2-4ac
Δ = 312-4·(-40)·(-6)
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(31)-1}{2*-40}=\frac{-32}{-80} =2/5 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(31)+1}{2*-40}=\frac{-30}{-80} =3/8 $
| 47Z+3x=32 | | -6(3x-1)=3(-2x-2) | | 7/2x+5/6x=7/4 | | 2x-1/4=3 | | -6(3x-1=3(-2x-2) | | 3e+4=12+3e | | 5(x+2)=525 | | (8-z)(5z+3)=0 | | 5+t=63.75 | | 5(1-2(x/2))=4x | | 4-4/3x=16 | | 8.2=3n-5 | | 15-5/6x=-10 | | 3x-54=153 | | 3x-55=153 | | 1/2n+27=2n | | 3x-550=153 | | 5p/7=40 | | 3x-50=153 | | 3x-30=153 | | 3x-18=153 | | (x+17)+(2x+19)=9 | | 181+-91=24x+4x | | -13=2b—b-10 | | 44x2+40x-4=0 | | 5.20n+0.80n+47=377 | | -(r-1)=-3+5r | | 9-2r=13 | | 10(5+n)-1=29 | | 49-6.5=x | | 12w-8=10w | | 7x-4-7(x+1)=2x+2 |